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Abstract

Laser shortpulse heating of metallic substrates requires microscopic examination of the energy transport in the

irradiated region. This is because of low specific heat capacity of electrons, which results in nonequilibrium temperature

distribution in this region. In the present study, laser shortpulse heating of gold with variable properties is considered.

Nonequilibrium energy transport is modelled using an electron kinetic theory approach. The resulting integro-differ-

ential equations are reduced to partial differential equation using a Fourier transform method. The resulting differential

equation is further transformed into two differential equations similar to those given in the two-equation model. The

coefficients of the differential equations are correlated. It is found that variable properties results in higher lattice site

and lower electron temperatures as compared to those corresponding to constant properties case.

� 2003 Elsevier Science Ltd. All rights reserved.
1. Introduction

When a laser short pulse interacts with a solid sub-

strate, nonequilibrium energy exchange occurs in the

region irradiated by a laser beam. Electrons absorb en-

ergy from the irradiated field and transfer their excess

energy to lattice site through collisional process. Since

the specific heat capacity of electrons is lower than the

lattice site specific heat capacity and electrons only

transfer some fraction of their excess energy to lattice

site during a short period of interaction, electron tem-

perature well excess of lattice temperature is resulted.

Consequently, energy transfer mechanism during short

duration of interaction cannot be described by a classi-

cal Fourier heating model; therefore, microscopic level

of examination of the problem is necessary.

Considerable research studies were carried out to

model the laser shortpulse heating process. Anisimov

et al. [1] addressed nonequilibrium energy transport for

laser short pulse heating process. The nonlocal heat

transport due to steep temperature gradients was ex-

amined by Luciani et al. [2]. They indicated that a

nonlocal macroscopic formula developed, as compara-
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ble to Fokker–Planck equation, represented successfully

the heat transport due to steep temperature gradient.

Nonequilibrium heating due to femtosecond pulse

heating of tungsten was investigated by Fujimoto et al.

[3]. They showed that electron temperature well excess of

phonon temperature occurred and electron–phonon

energy relaxation time of several hundred femtoseconds

was resulted. Nonequilibrium electron and lattice tem-

peratures were studied by Elsayed-Ali et al. [4]. Elec-

tron–phonon energy transfer was time resolved and it

was observed that electron–phonon energy transfer oc-

curred within in 1–4 ps, which increased with increasing

laser energy. An experimental investigation for electron–

phonon coupling in metallic superconductors was car-

ried out by Brorson et al. [5]. They indicated that the

measurement results agreed well with the theoretical

predictions obtained by Allen [6]. The hyperbolic heat

conduction due to a mode locked laser pulse train was

studied by Hector et al. [7]. They showed that the hy-

perbolic temperature profile in a finite region exceeded

that in a semi-infinite medium, since waves reflected

from the insulated boundary overlapped the waves

travelling towards the insulated boundary. The nonlin-

ear hyperbolic and parabolic heat conduction due to

shortpulse heating were studied for various boundary

conditions by Kar et al. [8]. They indicated that the ef-

fects of temperature dependent thermal properties had a
ghts reserved.
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Nomenclature

A A ¼ fkss
k2

B (B ¼ k) where k is thermal conductivity (W/

mK)

C C ¼ fk
k2
ð1� kss

qCpk2
Þ

D D ¼ qCp � fkss
k2

ABS Absolute value

Ce electron heat capacity (J/m3 K)

Cl lattice heat capacity (J/m3 K)

Cp specific heat of lattice site (J/kgK)

DE energy transferred to lattice site (J)

f fraction of excess energy exchange

G electron–phonon coupling factor (W/m3 K)

Io laser peak power intensity (W/m2)

k thermal conductivity (W/mK)

kB Boltzmann�s constant (1.38� 10�23 J/K)

me electron mass (kg)

N electron number density (1/m3)

rf reflection coefficient

S source term

Tl lattice site temperature (K)

Te electron temperature (K)

Td Debye temperature (K)

t Time (s)

Dt rime increment (s)

V electron mean velocity (m/s)

s spatial coordinates corresponding to the

electron movement (m)

x spatial coordinates corresponding to the x-
axis for phonon (m)

Dx spatial increment (m)

a thermal diffusivity (m2/s)

d absorption coefficient (1/m)

k mean free path of electrons (m)

q density (kg/m3)

sp electron mean free time between electron–

phonon coupling (s)

ss electron–phonon characteristic time ss ¼ð
G=CeÞ (s)
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significant effect on the resulting temperature field. A

relaxation model for heat conduction and generation

was introduced by Malinowski [9]. He observed that

unlike the classical hyperbolic model, the relaxation

solutions generally did not tend to approach the corre-

sponding parabolic solutions. Heating of opaque sur-

faces by picosecond laser pulses was studied by Strehlow

[10]. He demonstrated that the existence of a lower

threshold for measurable evaporation and ablation of

the surface increased drastically once the temperature

reached to initial temperature at the surface. Size effects

on nonequilibrium laser heating of metal films were in-

vestigated by Qiu and Tien [11]. They showed that the

size effect reduced the effective thermal conductivity and

increased the electron–phonon energy exchange rate. A

unified filed approach for heat conduction from macro-

to-micro scales was investigated by Tzou [12]. He

showed that the microscale interaction between phonons

and electrons and the inert behavior of molecules at low

temperatures are two physical factors in the macroscopic

lagging response in the model proposed. Cheng [13]

presented heat-conduction equations, which were de-

rived from the Boltzmann equations. He indicated that

the equations derived were a better approximation than

the Fourier law and Cattaneo equation for heat con-

duction at the scales when the characteristic length (film

thickness) was comparable to the heat-carrier mean free

path and/or characteristic time (laser pulse width).

An electron kinetic theory approach was introduced

by Yilbas [14] to accommodate nonequilibrium energy

transfer during laser heating process. He demonstrated
that the predictions of the electron kinetic theory ap-

proach became similar to the results obtained from the

Fourier heating model once the duration of the heating

pulse exceeded nanoseconds [15]. Electron kinetic theory

approach was extended to include three-dimensional

effects on the heating process [16]. However, the thermal

properties of the substrate material were kept constant

(independent of temperature) in the simulations. In the

present study, electron kinetic theory is considered to

model the laser short pulse heating of gold. The thermal

properties of gold are considered as temperature de-

pendent. The integro-differential equations governing

the nonequilibrium energy transport are reduced to two

differential equations as similar to those presented in

the two-equation model [17]. The coefficients of result-

ing differential equations are correlated with the coeffi-

cients of those equations presented in the two-equation

model.
2. Mathematical analysis of heating process

The mathematical arrangements of two-equation

model and electron kinetic theory approach are pre-

sented briefly, since the details of the analyses can be

found elsewhere [13,17,18].

2.1. Two-equation model

The two-equation model representing the energy ex-

change mechanism during phonon absorption and
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Fig. 1. Electron movement in the surface region (x ¼ 0 is the

free surface).
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electron–phonon coupling after one-dimensional con-

sideration can be written as [17]:

Ce

oTeðs; tÞ
ot

¼ r � ðkrTeðs; tÞÞ � G½Teðs; tÞ � Tlðx; tÞ	 þ S

Cl

oTlðx; tÞ
ot

¼ G½Teðs; tÞ � Tlðx; tÞ	

ð1Þ

Teðs; tÞ and Tlðx; tÞ are the electron and lattice site tem-

peratures, S is the laser source term (Iod expð�dxÞ), and
Ce and Cl are the electron and lattice heat capacities,

respectively. G is the electron–phonon coupling factor,

given by:

G ¼ p2meNV
2

6spTeðs; tÞ
ð2Þ

where me, N , V , and sp are electron mass, electron

number density, electron drift velocity and the electron

mean free time between electron–phonon coupling re-

spectively.

2.2. Electron kinetic theory approach

The energy transport in the region irradiated by a

laser shortpulse occurs due to electron–phonon coupling

process in the electron–phonon sub-systems. In the

electron kinetic theory approach, the energy transport is

modelled using a probabilistic approach and energy

method. The mathematical model pertinent to electron

kinetic approach is given in the previous study [14,19],

hence, the resulting integro-differential equations are

given.

The complete equation for the electron––lattice site

atom collision process is:

o

ot
ðqCpTlðx; tÞÞ

�
þ ss

o

ot
ðqCpTlðx; tÞÞ

�

¼
Z 1

�1

NsxV fkB
k2

exp

�
� jx� sj

k

�
Teðs; tÞds

�
Z 1

�1

NsxV fkB
k2

exp

�
� jx� sj

k

�
Tlðx; tÞds

þ
Z 1

�1

Iof

k2

Nsx

Nsx þ Nxs

� exp

�
� jx� sj

k

�Z s

x
f

0 ðxÞdnds ð3Þ

where f is the fraction of electron excess energy, which

transfers to lattice site during a single electron lattice site

collision, and ss is electron–phonon characteristic time.

The analysis related to f is given in Appendix A. The

first term on the left hand side of Eq. (3) is energy gain

by the substrate material through collisional process,

first and second terms on the right hand side represent

electron and lattice energies, and third term on the right
hand site is the energy gain of the electrons due to the

irradiated field. The final temperature of the electrons in

dx after the collision process can be readily found from

the conservation of energy, i.e.:

Total electron energy after collision ¼ Total electron

energy in during dt ) Change of lattice site energy

Total electron energy after collision:Z 1

�1

NsxV ð1� f ÞkB
k2

exp

�
� x� sj j

k

�
Teðs; tÞds ð4Þ

Total electron energy carried into dx during dt is:Z 1

�1

NsxV kB
k2

exp

�
� jx� sj

k

�
Teðs; tÞdsþ

Z 1

�1

Iof

k2

� Nsx

Nsx þ Nxs
exp

�
� jx� sj

k

�Z s

x
f

0 ðnÞdnds ð5Þ

and the change of lattice site atom energy is:

o

ot
qCpTlðx; tÞ

�
þ ssqCp

o

ot
ðTlðx; tÞÞ

�
ð6Þ

Consequently, substituting the Eqs. (3)–(5) into the re-

quirement of the conservation of energy gives:Z 1

�1

NsxV kB
k2

exp

�
� jx� sj

k

�
½Teðs; tÞ � fTlðx; tÞ	ds

¼
Z 1

�1

NsxV kB
k2

exp

�
� jx� sj

k

�
ð1� f Þhðs; tÞds

þ
Z 1

�1
ð1� f Þ Nsx

Nsx þ Nxs

� exp

�
� jx� sj

k

�Z s

x
f

0 ðnÞdnds ð7Þ

It should be noted that electron energy, which is char-

acterized by temperature Teðs; tÞ, is augmented from the

initial Teðs; tÞ by an amount equal to that absorbed in

travelling from s to x (Fig. 1). The total amount of en-

ergy, which is absorbed in an element dn, area A in time

dt is:
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IoAdtdnf 0ðnÞ ð8Þ

where Io is the laser power intensity, since all the beam

energy is absorbed in the x-axis. The electron density can

vary along the x-axis, in particular, the number of elec-

trons travelling from ds to dx may not be the same as

that from dx to ds. Therefore, the portion of energy

which is absorbed by electrons which travel from ds to
dx in dt is:

IoAdtf 0ðnÞdn
Nsx

Nsx þ Nxs
ð9Þ

where Nsx and Nxs are the number of electrons which

travel from s to x and from x to s, respectively (Fig. 1).

The total number of electrons which travel from ds to dx
in this time is:

NsxAV dt ð10Þ

where V is electron mean velocity. Hence, the average

energy absorbed by one electron in dn in time dt is:

Io
f 0ðnÞdn

ðNsx þ NxsÞV
ð11Þ

and the total amount of energy absorbed by this electron

from dx to ds is:Z s

x

f 0ðnÞdn

ðNsx þ NxsÞV
ð12Þ

Eq. (12) gives the extra energy gain by the electrons

which travel from ds to dx.
Eqs. (3) and (7) have been kept in general; however, it

may be useful to consider a particular case, where elec-

trons cannot escape through the surface (which may

equally apply when a steady state space charge exists).

In this case, the assumption that all directions of

travel are equally probable results in:

o

ot
qCpTlðx; tÞ

�
þ ss

o

ot
ðqCpTlðx; tÞÞ

�

¼
Z 1

�1

fk

k3
exp

�
� jx� sj

k

�
Teðs; tÞds

�
Z 1

�1

fk

k3
exp

�
� jx� sj

k

�
Tlðx; tÞds

þ
Z 1

�1

Iof

k2
exp

�
� jx� sj

k

�Z s

x
f

0 ðxÞdnds ð13Þ

which makes use of the simple kinetic theory result for

the electron thermal conductivity [20]:

k ¼ NV kBk
3

ð14Þ

and
Z 1

�1

k

k3
exp

��
� x� sj j

k

�
½Teðs; tÞ � fTlðx; tÞ	ds

�

¼
Z 1

�1

k

k3
exp � jx� sj

k

� �
ð1� f ÞTeðs; tÞds

þ
Z 1

�1
ð1� f Þ exp � jx� sj

k

� �Z s

x
f

0 ðxÞdnds ð15Þ

Eqs. (13) and (15) are the energy transport equations of

interest for laser short pulse heating process. The

method of solution to be used in the following analysis

is the transformation of the simultaneous differential––

integral Eqs. (13) and (15) using the Fourier integral

transformation, with respect to x [21]. This is due to the

fact that the resultant ordinary differential equations

may then be handled much more conveniently. Consider

first reduction of the set of equations to the differential

equation of heat conduction.

The Fourier transformation of a function f ðxÞ is

defined by:

F ½f ðxÞ	 ¼
Z 1

�1
expð�ixxÞf ðxÞdx ¼ F ðxÞ ð16Þ

and the Fourier inversion by:

f ðxÞ ¼ 1

2p

Z 1

�1
F ðxÞ expð�ixxÞdx ð17Þ

The Fourier transformation of the convolution integral:Z 1

�1
f ðnÞgðx� sÞds ð18Þ

is the produces of the transforms:

�ff ðxÞ � �ggðxÞ ð19Þ

and the transform of function exp � jxj
k

� �
is

2k

1þ x2k2
ð20Þ

Therefore, the Fourier transform of the function:

IX ¼
Z 1

�1

k

k3
exp

�
� x� sj j

k

�
Tlðx; tÞds ð21Þ

will be a constant factor (the value of integral) multi-

plying the transform of the function Tlðx; tÞ, i.e.:

F ½IX 	 ¼ kf

k3
TlF

Z 1

�1
exp

��
� jx� sj

k

�
ds
	

ð22Þ

or

F ½IX 	 ¼ kf

k3
TlF

Z 1

�1
exp

��
� jx� sj

k

�
HðjsjÞds

	
ð23Þ

where HðjsjÞ ¼ 1 for �1 < s < 1. Therefore:
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F ½IX 	 ¼ kf

k3
TlF

Z 1

�1
exp

��
� jx� sj

k

�	
F fHðjsjÞdsg

� kf

k3
T l

2k

x2k2 þ 1
dðxÞ ð24Þ

where dðxÞ is the Dirac delta function. Since this func-

tion only has a value of 1 at x ¼ 0, then the transform

is:

kf

k2
Tl ð25Þ

Using these results, the Eqs. (13) and (15) can be Fourier

transformed, the result of which is:

o

ot
qCpTl þ ssqCp

oTl
ot

� �

¼ kf

k3

2k

x2k2 þ 1
Te

� �
� kf

k2
Tl

þ Iodf
2k

� �
2k

x2k2 þ 1

� �
2d

d2 þ x2

� �
ð26Þ

and

k

k2
½Te � f Tl	 ¼

kð1� f Þ
k3

� �
2k

x2k2 þ 1

� �
Te

þ Iodð1� f Þ
2k

2k

x2k2 þ 1

� �
2d

d2 þ x2

� �
ð27Þ

If the transform function Te is obtained from Eq. (26)

using Eq. (27), the result is:

f 1

��
þ ss

oTl
ot

�
þ x2k2

�
o

ot
ðqCpTlÞ

¼ �x2kf Tl þ Iodf
2d

d2 þ x2

� �
ð28Þ

New multiplication in the transform domain by ðixÞ2
corresponds to second order differential in the real

plane. Hence the inversion of the above equation gives:

f 1

��
þ ss

oTl
ot

�
� k2o2

ox2

�
qCp

oTl
ot

¼ kf
o2Tl
ox2

þ Iodf expð�djxjÞ ð29Þ

If the terms ðk2=f Þo2=ox2 qCpðoTl=otÞð Þ and f ssðo=otÞ�
qCpðoTl=otÞð Þ are neglected for all f values, equation

(29) becomes:

qCp
oTl
ot

¼ k
o2Tl
ox2

þ Iod expð�djxjÞ ð30Þ

which is the same as a Fourier heat-conduction equa-

tion.
The Eq. (29) can be re-written as:

qCp
oTl
ot

¼ k
o2Tl
ox2

þ f
k2o2

ox2
qCp

oTl
ot

� �
� qCpss

o2Tl
ot2

þ Iod expð�djxjÞ ð31Þ

Eq. (31) is a third order partial differential equation,

which can be decomposed into second and third order

two differential equations, i.e., when Eq. (31) is decom-

posed into two equations, the resulting probable differ-

ential equations are:

A
oTe
ot

¼ B
o2Te
ox2

� C½Te � Tl	 þ Iod expð�djxjÞ

D
oTl
ot

¼ C½Te � Tl	
ð32Þ

where A, B, C, and D are the coefficients. To find the

values of A, B, C, and D, the following procedure is

adopted, i.e.:

D
o2Tl
ot2

¼ C
oTe
ot

�
� oTl

ot

�
ð33Þ

or:

oTe
ot

¼ D
C

o2Tl
ot2

þ oTl
ot

ð34Þ

Similarly:

D
o2

ox2
oTl
ot

� �
¼ C

o2Te
ox2

�
� o2Tl

ox2

�
ð35Þ

or:

o2Te
ox2

¼ D
C

o2

ox2
oTl
ot

� �
þ o2Tl

ox2
ð36Þ

Substitution of Eqs. (34) and (36) into Eq. (31) yields:

ðDþ AÞ oTl
ot

¼ BD
C

o2

ox2
oTl
ot

� �
þ B

o2Tl
ox2

� AD
C

o2Tl
ot2

þ Iod expð�djxjÞ ð37Þ

After equating Eqs. (37) and (31), the coefficients A, B,
C, and D can be calculated, i.e.:

A ¼ fkss
k2

B ¼ k

C ¼ fk

k2
1

�
� kss

qCpk2

�

D ¼ qCp � fkss
k2

ð38Þ

Eq. (32) is identical to Eq. (1) given in the two-equation

model. Consequently, setting the coefficients of Eqs. (32)

and (1), it yields:
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fkss
k2

¼ Ce

fk

k2
1

�
� kss

qCpk2

�
¼ G

qCp � fkss
k2

¼ Cl

ð39Þ

where ss ¼ G=Ce [21] and Ce ¼ cTe (where c is constant

and c ¼ 67:6 J/m3 K2 for gold [22]). Moreover, the

electron–phonon coupling factor is temperature depen-

dent, which can be written as [23]:

G ¼ p2meNV
2

6spTe
ð40Þ

Temperature dependent electron thermal conductivity

can be formulated as [22]:

k ¼ 1

3

V
2
Ce

aTl þ bT 2
e

ð41Þ

where a and b are constants, i.e.: a ¼ 1:23� 1011 (1/sK)

and b ¼ 1:2� 107 (1/sK2).

2.3. Numerical solution

The numerical method employed uses a finite differ-

ence scheme, which is well established in the literature

[24]. In order to obtain accurate results, the convergency

criteria should be met. The stability criteria for the

heating model is as follows:

1 � ABS
fqCp
Dt

"
þ 2k2qCp

1

DtðDxÞ2

" #
� 2kf

1

ðDxÞ2

" ##

þ ABS
kf

ðDxÞ2

"
� 2k2qCp

DtðDxÞ2

#
þ ABS

2k2qCp

DtðDxÞ2

" #

� ABS
fqCp
Dt

(
þ 2k2qCp

1

DtðDxÞ2

" #)
ð42Þ

where Dx is spatial increments in the x axis while Dt is the
time increment.
Table 1

Thermal properties of gold at 100 K

Td (K) c (J/m3 K2) d � 107 (1/m) m� 10�31 (kg) Cl � 106

(J/Km3)

343 67.6 7.1 9.1 2.8

Table 2

The coefficients and the range of values used in the simulations

k (m) f A� 104 (W/m3 K) B (W/mK)

10�9–10�10 10�1–10�5 2.52–2.09 315
In the numerical solution of Eq. (32), the coefficients

A, B, C, and D are defined through f , k, k, and ss, which
are determined from Eqs. (38)–(41), since temperature

dependent G, k and ss are known, from ss ¼ G=Ce, and

Eqs. (40) and (41).

Thermophysical properties of gold at 100 K and laser

pulse properties used in the computations are given in

Tables 1 and 2.
3. Results and discussion

Laser shortpulse heating of gold with variable

properties is considered. An electron kinetic theory ap-

proach is introduced when modelling nonequilibrium

heating process. The governing integro-differential

equations are reduced to differential equation, which is

then deformed into two differential equations. The co-

efficients of the differential equations are compared with

the coefficients of the equations in two-equation model.

The heating period considered in the present study is

in the order of 0.2–1 ps, therefore, the electron kinetic

theory model based on the collisional energy transport is

appropriate to describe the physical processes taking

place in this time domain, i.e. the time duration con-

sidered is longer than the electron–phonon interaction

duration, which is in the order of 0.02 ps at room tem-

perature [23]. Consequently, the models developed for

ultra-short-pulses (Hyperbolic-two-step model [25] and

Ballistic model [13]) are not considered in the present

study.

Fig. 2 shows electron temperature distribution inside

the substrate material for constant and variable pro-

perties and two heating periods. Electron temperature

attains high values for a constant properties case. This is

more pronounced at long heating period (10�12 s). In

this case, electron–phonon coupling constant reduces as

electron temperature increases. This in turn enhances

excess electron energy transfer to lattice site through a

collisional process. Moreover, as the heating period

progresses, energy absorbed by electrons increases,

which results in increased electron excess energy. Con-
k (W/mK) G� 1016

(W/m3 K)

ss (ps) N � 1028

(1/m�3)

V (m/s)

315 3.5 0.276 8.4 5010

C � 1016 (W/m3 K) D� 106 (J/m3 K) Ioð1� rf Þ (W/m2)

3.12–2.59 2.47–2.49 1� 1013
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Fig. 2. Electron temperature distribution inside the substrate

material for constant and variable properties and two time

periods.
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Fig. 3. Lattice site temperature distribution inside the substrate

material for constant and variable properties and two time

periods.
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sequently, for the constant properties case, where elec-

tron–phonon coupling factor is low, less electron excess

energy transfers to the lattice site. The magnitude of

electron temperature, therefore, increases considerably

for a constant properties case. The temperature gradient

corresponding to a constant properties case attains

higher values than that corresponding to a variable

properties case. This is because of the electron–phonon

coupling factor, which attains high values at high elec-

tron temperatures as seen from Fig. 7. The low levels of

electron–phonon coupling factor results in less electron

excess energy transferring to lattice site; consequently,

electron energy remains high in the surface vicinity.

Moreover, the absorption in the substrate material is

governed by the Lambert�s law, in which case, absorbed

energy decays exponentially with increasing depth in the

substrate material. The energy absorbed by electrons

reduces as the distance from the surface increases to-

wards the solid bulk. Therefore, less energy transporting

to lattice site and reducing amount of absorbed energy

with increasing depth results in sharp decay of electron

temperature at some depth below the surface. In the case

of a variable properties, high magnitude of electron–

phonon coupling increases the rate of electron excess

energy transferring to lattice site despite the low electron

excess energy at some depth below the surface due to

absorption of irradiated energy, which reduces expo-

nentially. Moreover, the rate of excess energy gain of

electrons is high in the surface vicinity of the substrate

material, which in turn results in high electron temper-

ature and relatively lower temperature gradient in this

region (x < 3� 10�8 m), i.e. electrons with high energy

can transfer more amount of their excess energy to lat-

tice site in this region as compared to some depth next to

the surface vicinity. This is more pronounced for a

constant properties case.

Fig. 3 shows lattice site temperature distribution in-

side the substrate material for constant and variable

properties and two heating periods. Temperature attains
high values in the surface vicinity for a variable proper-

ties case. In this case, high rate of electron excess energy

transferring to lattice site, due to high electron–phonon

coupling factor, results in high levels of lattice site en-

ergy gain in this region. In the case of constant prop-

erties, lattice site temperature attains lower values than

that corresponding to a variable properties case. This is

more pronounced at long heating periods. The temper-

ature gradient corresponding to a variable properties

case is higher than that corresponding to a constant

properties case. This occurs because of the excess elec-

tron energy transfer mechanism. When comparing elec-

tron and lattice site temperature distributions, it can be

observed that both temperature profiles do not behave

similar, i.e. the lattice site temperature gradient is higher

than the electron temperature gradient. This indicates

that electrons do not transfer their excess energy as they

gain from the irradiation field. In this case, electrons

gain more energy through the absorption and transfer

less energy to lattice site through collisional process.

Fig. 4 shows temporal variation of electron temper-

ature for constant and variable properties and two



300

350

400

450

2.0E-13 4.0E-13 6.0E-13 8.0E-13 1.0E-12

TIME (s)

T
E

M
P

E
R

A
T

U
R

E
(K

)

Var. Proper. : x = 0

Var. Proper. : x = 6E-08 m

Const. Proper. : x = 0

Const. Proper. : x = 6E-08 m
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locations inside the substrate material. Electron temper-

ature rises rapidly in the early heating period and the

rate of temperature rise reduces as the heating period

progresses. This is because of the excess energy gain of

electrons from the irradiated field. In this case, electrons

gain substantial energy from the irradiated field and

transfer considerably less energy to lattice site due to few

number of collisions taking place in the early heating

period. As the heating period progresses, some high

fraction of electron excess energy transfers to lattice site

due to large number of collisions taking place during the

long duration of heating period. This suppresses the

rapid rise of electron temperature. Moreover, electron

temperature attains almost steady at some depth below

the surface. This occurs because of electrons absorbing

less energy from the irradiated field, since amount of

energy absorbed reduces with increasing depth (Lam-

bert�s law). In addition, electrons moving from the sur-

face to the solid bulk loss some of their excess energy

through collisional process. Consequently, electron ex-

cess energy reduces as the depth below the surface in-

creases.

Fig. 5 shows temporal variation of lattice site tem-

perature for constant and variable properties cases and

two different locations inside the substrate material. The

rate of lattice site temperature rise is considerably small

in the early heating period (t ¼ 2� 10�13 s). This is be-

cause of few number of collisions taking place in this

period. As the heating period progresses, the rate of

temperature rise becomes steady, which is true for all

cases shown in the figure. The steady temperature rise

indicates that the rate of electron excess energy transfer

to lattice site becomes steady with progressing time.

Moreover, the rate of temperature rise for a variable

properties case is higher than that corresponding to a

constant properties case. This is due to electron–phonon

coupling factor, which attains high values for variable

properties case as seen from Fig. 7. The electron–

phonon coupling factor decays gradually with progress-

ing time although the rate of energy transferring to

lattice site remains almost steady. This is because of the
Fig. 6. (a) Specific heat capacity distribution inside the substrate mat

heat capacity for two locations inside the substrate material.
fact that electron excess energy increases with pro-

gressing time due to absorption process, which in turn

increases the amount of electron excess energy transfer-

ring to lattice site. However, gradual reduction in elec-

tron–phonon coupling factor suppresses the amount of

energy transfer to lattice site. Consequently, enhancement

of electron excess energy and suppression of electron–

phonon coupling factor with increasing heating period

result in almost steady rise in lattice site temperature.

Fig. 6 shows temperature dependent electron specific

heat capacity while Fig. 7 shows electron–phonon cou-

pling factor, respectively. Specific heat capacity decays

with increasing distance from the surface as similar to

electron temperature, since Ce ¼ cTe where c ¼ 67:6 J/

m3 K2. Consequently, temporal and spatial behavior of

specific heat capacity is similar to the behavior of elec-

tron temperature. In the case of electron–phonon cou-

pling, it decays sharply in the surface region of the

substrate material. The decay rate does not follow

electron temperature, since it depends on the mean ve-

locity (V ), characteristic time (ss), and electron and lat-

tice site temperatures (Te and Tl). In the early heating

period electron–phonon coupling factor increases rap-

idly similar to electron temperature rise. This indi-

cates that increasing electron temperature improves the
erial for two heating periods. (b) Temporal variation of specific



Fig. 7. (a) Electron–phonon coupling constant distribution inside the substrate material for two heating periods. (b) Temporal

variation of electron–phonon coupling constant for two locations inside the substrate material.
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energy transfer mechanism, i.e. in general, electron–

phonon coupling factor increases.
4. Conclusions

Laser shortpulse heating is considered and gold with

variable and constant properties are employed in the

simulations. Electron kinetic theory approach is intro-

duced when modelling the nonequilibrium energy

transport process. The integro-differential equations are

reduced to partial differential equations. The coefficients

of partial differential equations are related with the co-

efficients of those equations given in two-equation

model. It is found that variable properties has a signi-

ficant effect on electron and lattice site temperature rises

in the substrate material. In this case, a constant prop-

erties case results in low electron and high lattice site

temperatures. The electron–phonon coupling factor rises

rapidly in the early heating period as electron tempera-

tures increases in this domain. Moreover, as the heating

progresses electron temperature rises steadily while

electron–phonon coupling reduces gradually. This re-

sults in steady rise of lattice site temperature with pro-

gressing heating period. Electron and lattice site

temperatures rise at a slow rate at some depth below the

surface, which is because of the energy absorbed by

electrons from the irradiated field, which decays ac-

cording to the Lambert�s law. The rapid rise of electron

temperature in the early heating period is due to elec-

tron excess energy transfer process; in which case, elec-

trons transfer less energy to lattice site through few

number of collisions in the early heating period.
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Appendix A. Formulation of f

The fraction of electron excess energy transfer dur-

ing the time comparable or greater than the electron–

phonon characteristic time (ss) can be written in terms of

the energy balance across the section dx in the substrate

material, i.e.:

f ¼ ðElectron energyÞin � ðElectron energyÞout
ðElectron energyÞin � ðPhonon EnergyÞ

or

f ¼ ðTeÞin � ðTeÞout
ðTeÞin � Tl

ð43Þ

where ðTeÞin is the temperature of an electron entering

the section, ðTeÞout temperature of the an electron leav-

ing the section, and Tl is the phonon temperature. f
takes the values 0 � f � 1.
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